Category Archives: tracking systems

Apps & Comments

One of the virtues of the Internet is its ability to expand and respond to changing needs, interests and capabilities. A particularly good example occurs at the junction between electronic medical records (EMRs) and smart phones.

Several of my blogs have addressed the opportunities for patients to capture data and add it to their EMR and the challenges of making that information useful in the process of planning and managing the maintenance of good health and, as needed, treatment. Part of the challenge is to know what apps are available. “There’s an app for that” is now part of our language. But which one is the best one for your particular need?

There is a Wiki that will help: PHARMapps. It is structured by apps that deal with branded products and services and those that are unbranded, those for healthcare professionals and for patients, and by device operating systems. There are also classifications by topic. At this point there is no quick way to do a search by your choice of key word. Each app has an area for user comments–over time that may become the most valuable part of the Wiki.

Related:

FDA to Review Medical Smartphone Apps … the FDA is proposing a set of guidelines, outlining the types of apps that it plans to oversee. This won’t be all apps in the “Health” category, but will include those that, in the FDA’s words, “could present a risk to patients if the apps don’t work as intended.” 7/20/2011

iMeidicalApps Mobile medical apps review and comments by medical professionals

Digital Pharma: Big pharma’s iPhone apps: most recent update July 7, 2010

Shortlink: http://wp.me/pyfFd-a1

Advertisements

EMRs as an Integral Part of Medical Research

The cost for collection and processing of data is a significant part of the budget for a typical medical research project. Use of data that is already being collected for other purposes provides opportunities to improve the quality of the available data, reduce the cost of obtaining it, and minimize the time required to get it to the analysts. Here’s where an EHR system can help.

As an example, a research project wants to track the use and effectiveness of a new medicine to manage a particular illness over a period of five years. Let’s call that illness Alpha. Today, research is pretty much limited to people already diagnosed with Alph unless the sample size is very large. With access to an EHR that has a large enough database, three types of patients can be tracked for the study.

The EHR can be used to find 1,000 patients who have the disease. They can be given the new medicine and tracked over the next five years using data from their EHR that is being collected as a routine part of visits to their doctor. Extra blood tests or other procedures may be required with a new medication. Reminders to the doctor can be included in the EHR and the results will then be tracked like any other data. The extra cost of obtaining and delivering the data will be relatively low.

A sub-project can be designed to get some of these patients to participate in additional research such as development of family histories of Alpha, or genetic testing. Recruiting patients for additional test through their doctors will be less costly than most of today’s means of obtaining this type of data.

The EHR can be used to find 1,000 patients who have Alpha, are demographically very similar to the first set of patients and are not part of the test of the medication. Data from their EHRs can be used to provide a baseline against which to assess changes among the patients who are taking the medicine. Again, the extra cost of obtaining and delivering the routine data will be relatively low.

The EHR can also be used to find newly diagnosed cases of Alpha over the course of the five years of the study. Newly diagnosed patients of the doctors with patients already in the study can be given the medicine and then tracked to see how effective it is if administered early. Newly diagnosed patients of doctors who are not in the study (and presumably are not aware of the medicine) can be  found and tracked to provide a dynamic baseline for early use of the medicine. There would be no extra cost to obtain the data; it is already in patient EHRs. The cost of a wider search of the database to find these cases could be noteworthy but significantly less than any other way to build a baseline of newly diagnosed patients.

There is one other piece to a complete solution and that is access to a large enough number of electronic health records to find a limited number of cases. There are a number of organizations including the VA, Kaiser, and vendors of hospital systems that have large databases. There are also physician office systems like Practice Fusion that are database driven and can quickly draw information from millions of patient records today over a much more diverse demographic (location, age, and socioeconomic status).

A research project based on EHRs will have data collected by nurses and doctors who are trained to collect health related data to assure quality. Data can be delivered to the research team in a matter of days; the interim and final research results will be available for use substantially faster than is possible with most of today’s data collection methods. When an EHR is an integral part of the research project the result is better data at lower cost faster.

Short link: http://wp.me/pyfFd-8Q

EMRs as Part of Larger Networks

Electronic medical records provide an alternative to paper based records. They are also a source of information that can be used as part of other processes to address a wide range of healthcare issues. Here’s one example:

Congress has passed a bill requiring food processors to implement systems to track cases of food that may be related to outbreaks of food-borne illness.

An estimated 76 million people contract food-borne illnesses in the U.S. each year, with 325,000 hospitalizations and 5,000 deaths, according to the Centers for Disease Control and Prevention in Atlanta. Those illnesses cost the U.S. economy $152 billion a year in health care and related expenses. Rapid identification of the source of these illnesses and their removal from the market is critical.

Under the required tracking system, farmers would scan individual cases of produce, keeping records of where they are shipped. If a recall is ordered by the FDA, the records would be quickly disseminated to trace the current location of the recalled produce.

Once specific cases have been identified as carrying a food-borne illness, the new system will allow those cases to be removed from the market; however this is only part of a complete system. How can the illness be linked to specific cases of food? Here’s where an EMR system can help.

Most EMR systems provide for reporting of food-borne illnesses. By adding a few additional elements of information, the search for the source can be narrowed very quickly. When a doctor enters a diagnosis of food-borne illness, the system can ask for the type of food that is suspect, i.e., eggs, fish, spinach, etc., and the name of the market where the suspected food was purchased. The EMR can track doctors’ reports and when a target number of similar reports is reached an analysis can be launched. A single answer will not be helpful, but if the answers from several cases list the same food and the same market or chain, that provides a place to start. Appropriate information can be forwarded to a public agency.

Samples can be acquired, tests run, and the investigation focused on just a few likely sources. Once a case of food carrying an illness is found, the food processors’ system can be used to find all of the cases from a specific producer and they can be remove from the market.

There is one other piece to the complete solution and that is rapid access to a large enough number of records to find what may be an isolated set of incidents. There are a number of organizations including the VA, Kaiser, and vendors of hospital systems that have large databases and could report to public health agencies or the FDA. There are also physician office systems like Practice Fusion that are database driven and can quickly draw information from more than five million patient records today.

The tracking process from identification of a problem to a solution would look like this:

A Food Illness Tracking Process

This provides an illustration of the way an EMR can also be linked to other tracking systems to identify and facilitate the search for health issues such as some common types of sports injuries or automobile accident injuries. EMRs are clearly more than just systems to replace doctors’ paper records.

Short link: http://wp.me/syfFd-541